- произведение Вейерштрасса
- Mathematics: Weierstrass product
Универсальный русско-английский словарь. Академик.ру. 2011.
Универсальный русско-английский словарь. Академик.ру. 2011.
ВЕЙЕРШТРАССА ТЕОРЕМА — 1) В. т. о бесконечном про и введении [1]: для любой наперед заданной последовательности точек плоскости комплексного переменного существует целая функция, имеющая нулями точки этой последовательности и только пх. Эта функция может быть построена … Математическая энциклопедия
КАНОНИЧЕСКОЕ ПРОИЗВЕДЕНИЕ — Вейерштрасса, целая функция, все нули к рой составляют заданную последовательность комплексных чисел {ak}. Пусть нули расположены в порядке неубывания их модулей, и не имеют предельных точек в конечной плоскости (необходимое условие), т. е. Тогда … Математическая энциклопедия
БЕСКОНЕЧНОЕ ПРОИЗВЕДЕНИЕ — выражение содержащее бесконечное множество числовых или функциональных сомножителей, каждый из к рых отличен от нуля. Б. п. наз. сходящимся, если существует отличный от нуля предел последовательности частичных произведений при . 3начением Б. п.… … Математическая энциклопедия
Бесконечное произведение — В математике для последовательности чисел бесконечное произведение определяется как предел частичных произведений при . Произведение называется сходящимся, когда предел существует и не равен нулю. Иначе произведение называется расходящимся.… … Википедия
Теорема Вейерштрасса о целых функциях — У этого термина существуют и другие значения, см. Теорема Вейерштрасса. Теорема Любая целая функция , имеющая не более чем счётное количество нулей , где точка 0 нуль порядка , может быть представлена в виде бесконечного произведения вида … Википедия
АНАЛИТИЧЕСКАЯ ФУНКЦИЯ — функция, к рая может быть представлена степенным рядом. Исключит, важность класса А. ф. определяется следующим. Во первых, этот класс достаточно ш и р о к: он охватывает большинство функций, встречающихся в основных вопросах математики и ее… … Математическая энциклопедия
ВЕИЕРШТРАССА ЭЛЛИПТИЧЕСКИЕ ФУНКЦИИ — ф>тнкции, положенные К. Вейерштрассом в основу его общей теории эллиптических функций, излагавшейся им с 1862 на лекциях в Берлинском университете (см. [1], [2]). В отличие от более раннего построения теории эллиптич. функций, связанного с… … Математическая энциклопедия
НЕПРЕРЫВНАЯ ФУНКЦИЯ — одно из основных понятий математического анализа. Пусть действительная функция f определена на нек ром подмножестве Едействительных чисел , т. е. . Функция f наз. непрерывной в точке (или, подробнее, непрерывной в точке по множеству Е), если для… … Математическая энциклопедия
Ряд — I бесконечная сумма, например вида u1 + u2 + u3 +... + un +... или, короче, Одним из простейших примеров Р., встречающихся уже в элементарной математике, является сумма бесконечно убывающей… … Большая советская энциклопедия
Конструктивные способы определения вещественного числа — При конструктивном подходе к определению вещественного числа вещественные числа строят, исходя из рациональных, которые считают заданными. Во всех трёх нижеизложенных способах за основу берутся рациональные числа и конструируются новые объекты,… … Википедия
КОМПАКТ — метризуемое бикомпактное пространство. Примеры К.: отрезок, окружность, n мерные куб, шар, сфера, канторово множество, гильбертов кирпич; мерное евклидово пространство не является К., а подмножество такого пространства будет. К. тогда н только… … Математическая энциклопедия